Partial Differential Equations - Resit Exam

You have 3 hours to complete this exam. Please show all work. Each question has point values listed next to it for a total of 90 points. (10 points are free for a total of 100 points) This exam has two sides to it. Be sure to quote clearly any theorems you use from the textbook or class. Good luck!

- (20 points) Prove that if u(x, y) is harmonic in a bounded region Ω and u is C¹(Ω) then w = |∇u|² attains its maximum on ∂Ω, the boundary of Ω. (Hint, what is the sign of Δw?)
- 2. (15 points) For each of the following equations find the regions in the plane xy where they are elliptic, parabolic or hyperbolic, and determine the corresponding characteristic curves.
 - a) $2u_{xx} 4u_{xy} 6u_{yy} + u_x = 0$ $(x, y) \in \mathbb{R}^2$
 - b) $4u_{xx} + 12u_{xy} + 9u_{yy} 2u_x + u = 0$ $(x, y) \in \mathbb{R}^2$
 - c) $u_{xx} x^2 y u_{yy} = 0$ $(x, y) \in \mathbb{R} \times \mathbb{R}_+$
- 3. (20 points) Show that the solution to the one dimensional heat equation in free space

$$\partial_t u(t,x) = \partial_x^2 u(t,x) \quad [0,T] \times \mathbb{R}$$

 $u(0,x) = f(x)$

for $f(x) \in C^2(\mathbb{R})$ is

$$u(t,x) = K \star f = \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi t}} e^{-\frac{|x-y|^2}{4t}} f(y) \, dy$$

Prove that $\lim_{t\to 0} K \star f = f(x)$ in your derivation.

4. (30 points) Find the possible separated solutions $\phi(x,t) = X(x)T(t)$ to the equation

$$\partial_r^2 \phi = \partial_t^2 \phi + \partial_t \phi$$

If $\phi(0,t) = \phi(1,t) = 0$, $\partial_t(x,0) = 0$, and $\phi(x,0) = \sin^2(\pi x)$ what is $\phi(x,t)$? You may use the fact that the Fourier series coefficients of $\sin^2(\pi x)$ are

$$\frac{4}{n\pi}\left(\frac{(-1)^n-1}{n^2-4}\right)$$

without proof.

5. (5 points) Suppose that a function w satisfies the advection-diffusion equation $w_t + 2w_x = w_{xx}$ for 0 < x < 1 and t > 0 together with Robin boundary conditions $w_x = 2w$ at x = 0 and x = 1 and the initial condition w(x, 0) = 6x for 0 < x < 1. Show that the *total mass* defined by

$$M(t) = \int_0^1 w(x,t) \, dx$$

satisfies dM(t)/dt = 0 and deduce that M(t) = 3 for all $t \ge 0$.

Mol